

Chapter-20

Frontiers of Sustainable Symmetry: Coordination Complexes in Modern Chemical Science

Madhuri Shivdas Patil¹, Tahreem Ashraf Momin²

¹ Assistant Professor, Department of Chemistry, B.N.N. College, University of Mumbai, Bhiwandi, Dist. Thane

² Assistant Professor, Department of Chemistry, K.M.E. Society's G.M. Momin Women's College, University of Mumbai, Bhiwandi, Dist. Thane

Email: madhurivsp7@gmail.com

Abstract

Sustainable chemistry represents a transformative approach to mitigating environmental degradation, optimizing resource utilization, and advancing green technological processes. Coordination complexes, particularly those exhibiting symmetrical architectures, offer unparalleled versatility in catalysis, materials science, environmental remediation, and nanomedicine. Symmetry within these complexes profoundly influences stability, selectivity, and reactivity, thereby aligning with the principles of green chemistry. This chapter synthesizes recent advances in the design, characterization, and application of symmetrical coordination complexes. Emphasis is placed on ligand architecture, metal-ligand coo, and structure-function relationships, with a comprehensive analysis presented through detailed tables. The discussion highlights strategies for environmentally benign synthesis, energy-efficient catalysis, and sustainable nanomaterial development, offering insights into future research directions in this interdisciplinary field.

Keywords: Coordination complexes, symmetry, sustainability, catalysis

Introduction

Sustainable chemical practices have become imperative in addressing pressing global challenges, including industrial pollution, greenhouse gas emissions, and the depletion of natural resources. Coordination chemistry, which studies the bonding and structural relationships between metal ions and ligands, has emerged as a pivotal domain for designing systems that are both efficient and environmentally compatible (Chauhan, Mathur, & Sharma, 2024). The inherent versatility of coordination complexes allows for precise control over geometry, electronic configuration, and reactivity, making them ideal candidates for sustainable applications. Symmetry, a fundamental principle in chemical sciences, is instrumental in governing the physical and chemical properties of coordination complexes. The arrangement of ligands around a central metal ion, when symmetrical, can significantly enhance thermodynamic stability, reduce degradation rates, and facilitate predictable reactivity patterns (Chen & Zhang, 2023; Zhang & Chen, 2024). These attributes are particularly advantageous for sustainable catalysis, where high turnover numbers, selectivity, and recyclability are essential.

Historically, research on coordination complexes focused on structural diversity and theoretical considerations. Contemporary studies, however, increasingly prioritize

functional applications, integrating symmetry considerations with green chemistry principles to develop complexes that are efficient, robust, and environmentally benign. This chapter provides a comprehensive examination of symmetrical coordination complexes, highlighting their design strategies, functional advantages, and sustainable applications across various domains.

Objectives

The objectives of this chapter are as follows: 1. To elucidate the role of symmetry in enhancing the structural stability and functional efficiency of coordination complexes. 2. To analyze structure–property relationships in symmetrical coordination complexes, emphasizing ligand design and metal–ligand interactions. 3. To provide a comprehensive overview of sustainable synthesis strategies and environmentally friendly applications, including catalysis, environmental remediation, and nanomaterial development. 4. To synthesize current literature into detailed tables that capture key findings, ligand types, metal centers, and sustainability outcomes.

Data and Methodology

The methodology underpinning this chapter is a rigorous, structured literature review focusing on symmetrical coordination complexes and their sustainable applications. Peer-reviewed journals published between 2021 and 2025 were extensively surveyed to identify relevant studies in coordination chemistry, catalysis, environmental remediation, and nanomedicine. Selection criteria included:

- Emphasis on complexes exhibiting high symmetry and structural predictability.
- Demonstration of green or sustainable synthesis methods.
- Application-oriented studies detailing catalytic, environmental, or materials performance.
- Inclusion of mechanistic or computational analyses elucidating structure–function relationships.

The data were synthesized into organized tables, highlighting symmetry types, ligand classes, metal centers, and applications. Notes accompanying each table provide additional insights into the functional significance, environmental impact, and relevant references, ensuring clarity and academic rigor.

Results and Discussion

1. Symmetry Types and Structural Considerations

Symmetry plays a critical role in determining the physical stability, electronic properties, and reactivity of coordination complexes. Common geometrical arrangements include:

- Octahedral (Oh): Six ligands arranged symmetrically around a central metal, providing high thermodynamic stability and predictable catalytic behavior.
- Tetrahedral (Td): Four ligands arranged around the metal center, offering moderate stability and applications in selective catalysis.
- Square Planar (D4h): Four ligands in a planar configuration, often seen in transition metal complexes with applications in oxidation-reduction reactions.
- Trigonal Bipyramidal (D3h): Five-coordinate complexes with moderate stability, applicable in selective ligand exchange and catalysis.

The influence of symmetry extends to electronic configurations and ligand field splitting, where highly symmetrical complexes exhibit uniform orbital interactions, enhancing stability and selectivity (Mehta & Singh, 2025).

2. Ligand Architecture and Green Design

Ligands profoundly affect the structural and functional properties of coordination complexes. Symmetrical polydentate ligands enhance chelation strength, reduce metal leaching, and improve recyclability, aligning with green chemistry principles (Nguyen & Vo, 2023). Renewable ligands derived from amino acids, carbohydrates, and polyphenols are increasingly employed to minimize environmental impact (Oliveira & Costa, 2021). Symmetrical ligand arrangements promote self-assembly and predictable structural outcomes, reducing the need for harsh reaction conditions or hazardous solvents.

3. Sustainable Synthesis Strategies

Several strategies facilitate the synthesis of symmetrical coordination complexes in an environmentally responsible manner:

- Self-Assembly: Exploiting directional metal-ligand interactions allows spontaneous formation of symmetrical architectures under mild conditions, reducing energy consumption (Chen & Zhang, 2023).
- Mechanochemical Synthesis: Utilizing mechanical energy instead of solvents, particularly effective for symmetrical ligand systems, minimizes waste and avoids toxic reagents (Das & Singh, 2022).
- Aqueous and Bio-based Solvents: Employing water or renewable solvents for complex formation enhances sustainability and reduces environmental hazards (Banerjee & Gupta, 2024).

4. Structure–Function Relationships

Symmetry influences both the electronic and steric environment of the metal center, impacting catalytic performance, substrate selectivity, and environmental interactions:

- Stability: Symmetrical complexes distribute electronic density evenly, reducing localized strain and enhancing thermal and chemical robustness (Zhang & Chen, 2024).
- Catalytic Efficiency: Well-defined reactive sites allow selective activation of substrates, minimizing by-products and enhancing turnover numbers (Fang & Li, 2023).
- Environmental Applications: Symmetrical arrangements facilitate adsorption of pollutants, efficient electron transfer, and reproducible catalytic cycles for remediation processes (Reddy & Rao, 2023).

5. Applications

5.1 Catalysis

Symmetrical coordination complexes serve as catalysts in numerous green chemical transformations, including:

- Hydrogenation and oxidation reactions with high selectivity and turnover numbers.
- C–C coupling and functional group transformations under mild conditions.

- Photocatalytic degradation of organic dyes with minimal waste generation (Patel & Sharma, 2024).

5.2 Environmental Remediation

Symmetrical complexes demonstrate high efficiency in removing heavy metals and organic pollutants from wastewater due to uniform active sites and robust metal–ligand frameworks:

- Pb²⁺ and Cd²⁺ removal using chalcone- and pyrimidine-based ligands.
- Dye degradation catalyzed by Schiff base complexes under ambient conditions (Ghosh & Roy, 2024).

5.3 Materials Science

Symmetrical coordination complexes are foundational in constructing metal–organic frameworks (MOFs) and supramolecular assemblies:

- MOFs with regular pore structures enhance gas adsorption, separation, and storage.
- Nanostructured materials derived from symmetrical complexes allow precise control over size, shape, and surface properties for energy applications (Li & Zhou, 2022).

Tables

Table 1. Common Symmetry Types in Coordination Complexes and Their Properties

Symmetry Type	Geometry	Point Group	Stability	Typical Applications
Tetrahedral	6-Coordinate	Oh	High	Catalysis, MOFs, CO ₂ capture
Octahedral	4-Coordinate	Td	Moderate	Catalysis, nanomaterials
Square Planar	4-Coordinate	D4h	High	Oxidation/reduction catalysis
Trigonal Bipyramidal	5-Coordinate	D3h	Moderate	Selective catalysis, ligand exchange

Note. Symmetry influences both stability and functional efficiency in sustainable applications (Chen & Zhang, 2023; Zhang & Chen, 2024).

Table 2. Examples of Symmetrical Ligands and Their Application

Ligand Type	Symmetry	Metal Center	Key Application	Reference
Schiff Base	C2	Cu (II), Ni (II)	Dye degradation, photocatalysis	Banerjee & Gupta, 2024
Pyrimidine-based	C2v	Co (II), Fe (III)	CO ₂ capture	Kumar & Sharma, 2024
Chalcone-derived	C2	Zn (II), Mn (II)	Heavy metal remediation	Ghosh & Roy, 2024
Polydentate amino acid	D2	Various	Catalysis, drug delivery	Fang & Li, 2023

Table 3. Summary of Symmetrical Coordination Complex Applications

Application	Example Complex	Performance Metric	Sustainability Benefit	Reference
Catalysis	Octahedral Cu (II)-Schiff base	Turnover # > 200	Reusable, low metal leaching	Banerjee & Gupta, 2024
Dye Degradation	Square-planar Ni (II)-Pyrimidine	95% degradation in 2 h	Mild conditions, minimal waste	Patel & Sharma, 2024
CO ₂ Capture	Octahedral Fe(III)-Pyrimidine	3.5 mmol/g adsorption	Renewable ligand, recyclable	Kumar & Sharma, 2024
Heavy Metal Removal	Zn (II)-Chalcone	99% Pb ²⁺ removal	Water purification, sustainable	Ghosh & Roy, 2024

Future Perspectives and Challenges

Despite significant progress, challenges remain in scaling up sustainable synthesis methods, improving long-term stability, and integrating coordination complexes into industrial processes. Future research should focus on interdisciplinary approaches combining experimental, computational, and life-cycle assessment studies to further enhance sustainability.

Conclusions

Symmetry is a pivotal determinant in the functional efficiency and environmental compatibility of coordination complexes. Symmetrical architectures confer enhanced stability, catalytic selectivity, and structural predictability, facilitating applications in green catalysis, environmental remediation, and advanced materials science. Integration of renewable ligands, mild synthesis methods, and self-assembly principles further reinforces the sustainability of these systems. Tables provide concise, data-driven summaries of ligand types, symmetry effects, and applications, offering a comprehensive resource for researchers pursuing environmentally responsible chemical innovations (Nguyen & Vo, 2023; Reddy & Rao, 2023; Zhang & Chen, 2024).

References

1. R., & Khan, M. (2025). Coordination complexes as nanocatalysts for wastewater remediation. *Nanotechnology for Environmental Engineering*, 10(1), 45–62. <https://doi.org/10.1007/s41204-025-00145>
2. Banerjee, S., & Gupta, P. (2024). Schiff base metal complexes: Green synthesis and environmental applications. *Materials Today Nano*, 19, 100198. <https://doi.org/10.1016/j.mtnano.2024.100198>
3. Chen, L., & Zhang, Y. (2023). Symmetry-driven design of coordination complexes for pollutant capture. *Journal of Coordination Chemistry*, 76(12), 2105–2120. <https://doi.org/10.1080/00958972.2023.2105120>
4. Chauhan, P., Mathur, P., & Sharma, A. K. (2024). Advancements in coordination chemistry and trends in the chemical industry. *International Journal for Research in Applied Science and Engineering Technology*, 12(6), 112–125. <https://doi.org/10.22214/ijraset.2024.60943>
5. Das, A., & Singh, R. (2022). Nanostructured coordination complexes in catalysis: Advances and perspectives. *Catalysis Today*, 384, 112–125. <https://doi.org/10.1016/j.cattod.2022.01.015>
6. El Sayed, M., & Ibrahim, H. (2021). Metal–ligand frameworks for CO₂ capture and conversion. *Journal of Cleaner Production*, 310, 127512. <https://doi.org/10.1016/j.jclepro.2021.127512>
7. Fang, J., & Li, H. (2023). Coordination complexes in nanomedicine: Drug delivery and imaging. *Nanomaterials*, 13(7), 1155. <https://doi.org/10.3390/nano13071155>
8. Ghosh, P., & Roy, S. (2024). Chalcone-derived ligands in coordination chemistry: Environmental remediation potential. *Inorganica Chimica Acta*, 555, 120–132. <https://doi.org/10.1016/j.ica.2024.120132>
9. Han, Y., & Wang, J. (2022). Coordination complexes for dye degradation: Nanocatalytic approaches. *Environmental Nanotechnology, Monitoring & Management*, 18, 100678. <https://doi.org/10.1016/j.enmm.2022.100678>
10. Iqbal, M., & Hussain, A. (2021). Schiff base complexes as ecofriendly catalysts. *Applied Organometallic Chemistry*, 35(9), e6289. <https://doi.org/10.1002/aoc.6289>
11. Jha, R., & Patel, S. (2023). Heavy metal adsorption using nanostructured coordination complexes. *Environmental Science and Pollution Research*, 30(5), 6123–6135. <https://doi.org/10.1007/s11356-022-22456>
12. Kumar, V., & Sharma, R. (2024). Pyrimidine-based ligands in coordination chemistry: Applications in CO₂ capture. *Polyhedron*, 234, 116345. <https://doi.org/10.1016/j.poly.2024.116345>
13. Li, X., & Zhou, Y. (2022). Hybrid nanomaterials integrating coordination complexes for pollutant removal. *Journal of Materials Chemistry A*, 10(15), 7654–7668. <https://doi.org/10.1039/D2TA01234A>
14. Mehta, A., & Singh, P. (2025). Computational docking and symmetry analysis in coordination chemistry. *Computational Chemistry Reviews*, 7(2), 88–104. <https://doi.org/10.1016/j.ccr.2025.02.004>

15. Nguyen, T., & Vo, D. (2023). Multifunctional coordination complexes for sustainable applications. *Sustainable Chemistry and Engineering*, 11(9), 4567–4579. <https://doi.org/10.1021/acssuschemeng.3c04567>
16. Oliveira, R., & Costa, M. (2021). Coordination complexes in water purification: Case studies. *Water Research*, 190, 116728. <https://doi.org/10.1016/j.watres.2021.116728>
17. Patel, K., & Sharma, N. (2024). Schiff base complexes as photocatalysts for dye degradation. *Journal of Photochemistry and Photobiology A: Chemistry*, 439, 114567. <https://doi.org/10.1016/j.jphotochem.2024.114567>
18. Reddy, S., & Rao, P. (2023). Nanostructured coordination complexes for heavy metal remediation. *Journal of Environmental Chemical Engineering*, 11(3), 109876. <https://doi.org/10.1016/j.jece.2023.109876>
19. Singh, A., & Kumar, S. (2023). Coordination complexes in climate mitigation: CO₂ conversion pathways. *Green Chemistry*, 25(4), 1456–1470. <https://doi.org/10.1039/D3GC01234A>
20. Zhang, Y., & Chen, L. (2024). Symmetry principles in coordination complexes: Implications for sustainable nanotechnology. *Coordination Chemistry Reviews*, 495, 214567. <https://doi.org/10.1016/j.ccr.2024.214567>