

Chapter-15

Water purification and Resource management

**Dr. Pratibha Gopalrao Raundal¹, Minakshi Dilip Birari ², Jayashri Vilas Raundal³,
Dipali Pandurang Raundal⁴**

^{1,2,3,4} Department of Chemistry ,K.A.A.N.M.S. ACS College,
(Affiliated to SPPU,Pune) Satana, Nashik MH

Email-pratibhabhadane14@gmail.com

Abstract –

Rapid urbanization and huge industrialization often lead to the contamination of different water bodies. Innovative research activities are continuously carried out all over the globe on various wastewater treatment processes like adsorption, advanced oxidation process, electrocoagulation, electro oxidation, and membrane separation. Adsorption is one of the simplest and most efficient water and wastewater treatment techniques. Water purification and resource management are critical components of sustainable development mainly in different regions where problems have to face scarcity of water , pollution and increasing demand. In the chapter examination of various plants such as key water purification technologies which includes conventional treatments methods , membrane filtration, adsorption and emerging green technologies . This chapter also focuses on Nano materials based on purification techniques water and phytoremediation methods. It explores integrated water resource management (IWRM), principles, conservation practices, wastewater recycling and community based management. The chapter further evaluates the environmental economic and policy factors that affect the water management choices. Overall this chapter offers an in depth overview of existing methods and emerging possibilities for securing safe water supplies while supporting sustainable use of resources.

Keywords - water resources, purification, nanomaterials, adsorption

Objectives

- 1) **To describe** the importance of water purification in ensuring safe and sustainable water supply.
- 2) **To explain** various physical, chemical and biological methods used for water purification.
- 3) **To analyse** advance and emerging green purification technologies including membrane systems, adsorption techniques and eco friendly approaches nanomaterial base technologies.
- 4) **To examine** the principles of integrated water resource management (IWRM).
- 5) **To discuss** strategies for efficient water allocation conservation and reuse.

1. Water purification

Introduction-

Water is essential and major constituent of all the living organism, supporting the life processes by virtue of its unique properties. Aquatic organisms contribute significantly to the natural chemical transformation occurring in environment. Human

civilization requires water for a variety of purposes. Quality and quantity of water available to humans have been vital

role in determining their wellbeing and history of human civilization reveals this. Various hazardous materials are entering into water bodies due to the global industrial revolution. Several industries including textile, leather, electronics, metal finishing, etc. are discharging large quantities of heavy metals on a continuous basis. The removal of heavy metals is essential as they can enter into the bodies of land and marine animals accumulate and lead to death.

The advanced treatment systems employ nanomaterials to remove heavy metals, organic contaminants, and dissolved gases, along with different pathogens. This technique presents new ways to make water treatments pave new heights with the development of advanced next generation systems.

Nano adsorbents used for water purification technique. Presently, problems with quantity and quality of water supply are not yet solved and in some respects are becoming more serious. These problems include increased water use due to population growth, and contamination of drinking water by improperly discarded hazardous wastes leading to a variety of water borne diseases. The purpose of water purification is to remove the contaminants from water so that the treated water can meet the acceptable quality standards. The quality standards usually depend upon whether water will be reused or discharged into a receiving stream. Water Purification also meets the need of medical pharmacological, chemical and industrial applications for potable water. The purification procedure decreases the concentration of contaminants such as suspended particles, parasites, bacteria algae viruses and fungi. Hydrosphere includes all types of water resources, viz , ocean, seas,rivers, stream, reservoir , glaciers, polar ice caps and ground water in all type of water resources keep on circulating as a result of hydrologic cycle. About 97% of Earth's water is found in ocean as salty water. About 2% water present as polar ice caps and glaciers and only 1% water available as fresh water (surface water and ground water) for use to man. Major uses of fresh water are for irrigation (~30%) thermal power plants, (~50%), industrial consumption (~12%) and domestic (~7%)

Without water, there would be no life on Earth. Life probably began in water. Many plants and animals can live only in water. There is plenty of liquid water on Earth although there is short supply for water due to pollution. Pollution is a measurable degradation of water quality. Keeping water and water resources free from pollution is of primary importance for any country. Misuse of water resources and their pollution with waste material also intensify the problem. Scarcity of water is probably one of the major problems that our country is facing today. Present, the potable (drinking) water consumed by 80 to 90% of the population of India is of poorer quality, by international standards.

Material and Methods-

Water purification treatments vary depending on the source and quality of the water.

I. Conventional Methods

1. Coagulation and Flocculation: Chemicals like alum are added to remove dirt and particles.
2. Sedimentation: Heavy particles settle to the bottom, making it easier to remove impurities.
3. Boiling and Filtration: Water passes through filters like sand, to remove remaining particles.
4. Disinfection: Chlorine, UV light, or other disinfectants kill bacteria and viruses.

II. Advanced Methods

1. Membrane Filtration in Water:

This method is used for improving Purity and Efficiency of water. This method uses semi-permeable membranes to separate contaminants from water based on particle size. A physical barrier with microscopic pores is used.

Pressure-driven process: Pressure is applied to push water through the membrane.

Separation: Water molecules pass through, while larger particles and contaminants are retained on the other side.

Types of membrane filtration

1. Microfiltration (MF): Removes larger particles like sediment and bacteria.
2. Ultrafiltration (UF): Removes particles, bacteria, viruses, and high-molecular-weight organic substances.
3. Nanofiltration (NF): Removes dissolved salts and smaller molecules in addition to what UF removes.
4. Reverse Osmosis (RO): The most advanced type, which removes nearly all dissolved salts and contaminants.

2. Adsorption techniques – Adsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a molecular or atomic film (adsorbate). It removes contaminants by sticking them to a solid surface (adsorbent), using materials like activated carbon, zeolites, or biomass in fixed beds.

Depending on the type of attractions between adsorbate and adsorbent, the adsorption can be divided into two types—Physical (physisorption) and chemical (chemisorption).

Adsorption Techniques & Materials:

- Activated Carbon (AC): Highly porous carbon from wood, excellent for organic contaminants.
- Bio-adsorbents: Low-cost options like agricultural waste (husk, peels) or biomass.
- Zeolites & Clays: Natural minerals used for removing heavy metals and ions.
- Nanomaterial: Advanced materials with high adsorption capacity for specific pollutants.

It works by following mechanism:

1. Diffusion: Pollutants move from the bulk water to the adsorbent surface.
2. Pore Migration: Pollutants enter pores within the adsorbent material.
3. Binding: Contaminants attach via weak forces or strong chemical bonds . .

3. Phytoremediation Methods for Water:

Phytoremediation, the use of green plants to treat and control wastes in the water, soil, and air.

Rhizofiltration: Roots of aquatic plants act as filters, absorbing or adsorbing pollutants from the water into the root zone.

Phytoaccumulation: Plants absorb contaminants (especially heavy metals) and accumulate them in their harvestable parts, allowing for removal.

Phytostabilization: Plants reduce pollutant mobility and bioavailability in water by changing the soil chemistry.

Phytovolatilization: Plants take up pollutants and release them as less harmful volatile compounds through transpiration (e.g., mercury, selenium).

Phytodegradation: Plants use their enzymes to break down organic pollutants into simpler, harmless substances.

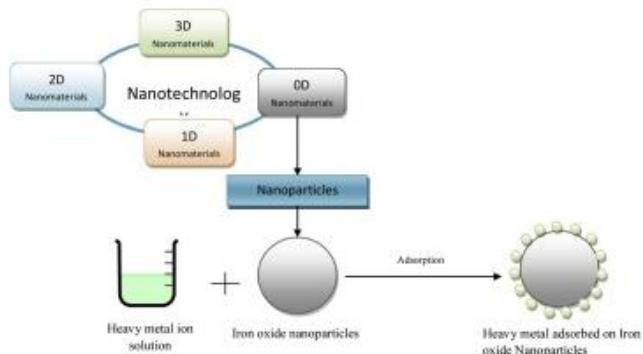
Rhizodegradation: Microorganisms in the root zone break down organic pollutants, stimulated by plant root exudates.

Deployment: Grow plants in contaminated water or engineered systems like constructed wetlands or bio-lakes.

Uptake: Roots absorb water and dissolved contaminants, or contaminants are broken down by root-associated microbes.

Transformation: Pollutants are stored in plant tissues, converted to less toxic forms.

Harvest: Harvest plants periodically to remove accumulated pollutants, preventing their return to the environment.


4. Water purification using nanomaterials

Water purification using this methods include Nano fiber membranes to filter contaminants, employing carbon-basednanomaterials for adsorption, using magnetic nanoparticles to capture and remove pollutants, and applying nanoparticles like silver and titanium dioxide for disinfection via biocide action. Biological nanoparticles show great potential for waste water treatment. MgO nanoparticles and Cellulose acetate (CA) fibers implanted with Ag nanoparticles have been reported as antibacterial against gram positive as well gram negative bacteria. Nanofiltration is also applied in the production unit where surface water is treated promising to resolve the recovery problem of titanium oxide nanoparticles (TiO₂ NPs). (CNT) Carbon nanomaterials (CNMs) are interesting adsorption agents because of their structural and electronic properties. Because of large surface area and selective nature for aromatics CNMs have advantages in wastewater treatment. CNTs, due to their structure are more efficiently being used than other carbon nanomaterials. CNTs show specific adsorption capacity for cations, dyes and ethyl benzene. Functionalization of CNTs enhances their adsorption capacity by increasing surface area and dispersibility. Nanocomposite adsorbent formed by the combination of CNTs having adsorption properties and iron oxide having magnetic properties, are capable in removing chromium from water.

II. Different Types of Nanomaterials

1. Nano metals and Metal Oxides: Iron oxide nanoparticles are highly effective in wastewater treatment due to their large surface area and magnetic properties, acting as powerful nano-adsorbents and catalysts to remove heavy metals, dyes, organic pollutants, and even emerging contaminants like nitrates through adsorption, Fenton processes, and photo catalysis, with easy magnetic separation and recyclability making them cost-effective and eco-friendly for water purification. Metal oxides are crucial in water purification for removing heavy metals, organic pollutants, and pathogens through mechanisms like adsorption, photocatalysis, and disinfection, leveraging their high surface area, tunable properties, and catalytic activity, especially in nanoscale forms for enhanced efficiency and easier separation, with common examples being TiO_2 , ZnO_2 , and Fe_2O_3 . Nanofiltration are majorly installed in the drinking water industry.

The reason for their success in water industries is that they work as softening membranes. Softening of water is the major purposes of Nano filtration.

2. Nanozerovalent Iron: Nano Zero-Valent Iron purifies water by rapidly reducing and adsorbing various organic and inorganic pollutants (like heavy metals, dyes, pesticides) through powerful redox reactions.

3. Iron Oxides Nanoparticles: As iron oxides nanoparticles are simple and can easily be synthesized so these are frequently being used now a days for the removal of heavy metals. This is typical to recover nanosorbent materials from contaminated water because of their small size but magnetite and magnetite can be used as adsorbents because of their magnetic behavior. Because of magnetic behavior these iron oxide nanoparticles as a nanosorbents can be recovered from solution by applying external magnetic field. Therefore these nanoparticles are being magnificently working as nanosorbents for removing heavy metal ions from water.

4. Metal-Organic Frameworks

5. Nano adsorbents: Various metal oxides can be used as low-cost adsorbents for heavy metal removals along radionuclides. Some of the nanoadsorbent includes carbonnanotubes-based nanoadsorbent, metal oxide nano adsorbent, polymer nanoadsorbent, and zeolites.

6. Carbon Nanotubes (CNT) Nano Adsorbent- These are the carbon allotropes with cylindrical nano-pores. They are present either as uni-walled or multi-walled nanotubes. They have the unique feature of higher active adsorption sites with adjustable surface chemistry and antimicrobial properties.

7. Polymeric Nano Adsorbent: Dendrimers are a class of polymeric adsorbents that are used for heavy metal removal.

Mechanism of Nanoadsorption:

Use materials at the nano scale (like carbon nanotubes, nano fibers, nanoparticles, nano membranes) for superior water/air treatment via enhanced adsorption, catalysis, and filtration, removing heavy metals, pathogens, dyes, and organic pollutants with high efficiency, low pressure. Adsorption is a very common techniques used for water treatment. Nanomaterials can be used as adsorbents for water treatment in various forms such as catalytic membranes, biomimetic membranes. Nano adsorption utilizes the exceptionally high surface-area-to-volume ratio of nanomaterials (typically 1-100 nm in size). This property allows them to efficiently bind and sequester various organic and inorganic contaminants, such as heavy metals, dyes, pesticides, and pharmaceuticals, from water.

Electrostatic attraction, hydrogen bonding, and hydrophobic interactions are primary binding mechanisms, often enhanced by functionalizing the surface of the nano adsorbents. **Magnetic nano adsorbents** are a promising option for easier separation from the treated water using an external magnetic field.

Common materials like carbon nanotubes (CNTs), graphene oxide, metal oxides (iron, titanium, zinc oxides), and hybrid biopolymer-based Nano adsorbents are widely used. Nanoparticles purify water using methods like Nano adsorption (binding contaminants to high-surface-area NPs), nanocatalysis (breaking down organics via reactive oxygen species), Nanomebranes (selective filtration with nanopores), and nanodisinfection (inactivating microbes like with TiO₂ under UV light). These methods are effective for removing bacteria, viruses, heavy metals, and organic pollutants.

Application of Nano adsorption Materials in Water Treatment

- **High Efficiency:** Nano adsorbents exhibit much higher efficiency and faster removal rates compared to traditional materials due to their enormous surface area-to-volume ratio.
- **Versatility:** They can effectively remove a broad spectrum of pollutants, including heavy metal ions (lead, cadmium, arsenic), organic contaminants (pesticides, pharmaceuticals, dyes), and biological toxins.
- **Functionalization:** The surface of nanoparticles can be easily modified or functionalized with specific chemical groups to increase their affinity and selectivity for target pollutants.

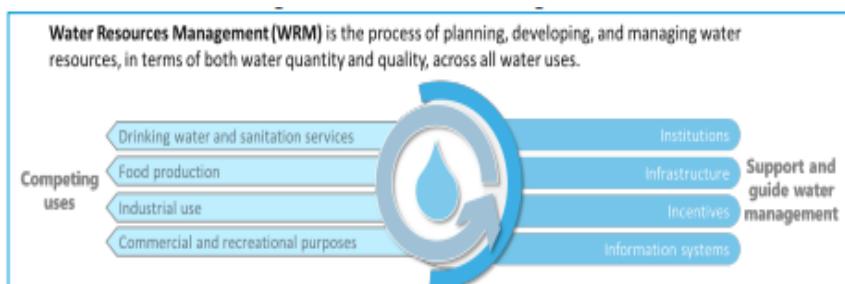
Recyclability: Many nano adsorbents, particularly magnetic ones (e.g., iron oxide), can be easily separated from the treated water using a magnetic field and regenerated for reuse, improving cost-effectiveness.

Conclusion-

Advanced water purification methods effectively remove diverse contaminants (pathogens, chemicals, particles) for safe drinking or industrial use, with conclusions highlighting disinfection (UV, chlorination) as crucial but needing careful management (like pre-filtration for UV, residual checks for chlorine), and systems like reverse osmosis offering high purity but requiring pressure and membrane maintenance, ultimately showing no single method is perfect, so tailored, multi-stage approaches are best for specific water quality needs. Advanced technology of nano filtration, reverse osmosis (RO), membrane filtration, MOF/COF adsorbents, nanomaterials (TiO_2, ZnO) used for removal of contaminants (microplastics, heavy metals, pathogens, emerging pollutants). It has superior efficiency & selectivity as well as Compact, modular designs. It is low cost and energy saving method because nanomaterial adsorbents can be regenerated. Advanced purification isn't just about removing more contaminants it's about smart, adaptable, and greener solutions that can meet tomorrow's water security needs.

2. Water Resource Management

1. Introduction


Water is one of the most vital natural resources on Earth, playing a critical role in agriculture, industry, and human consumption. However, increasing demand, pollution, climate change, and population growth have made water management a growing concern worldwide.

Water Resources Management (WRM) is the process of planning, developing, and managing optimum use of water resources in terms of both water quantity and quality. Water resources management refers to a whole range of different activities: monitoring, modeling, exploration, assessment, design of measures and strategies, implementation of policy, operation and maintenance, and evaluation.

Effective **water resource management (WRM)** ensures the sustainable use and protection of water resources for current and future generations.

It requires the support and guidance of institutions, infrastructure, incentives, and information systems. Water resource management also entails managing water-related risks, including floods, drought, and contamination (World Bank, 2017).

Figure: Water Resource Management

This chapter outlines the fundamental principles, challenges, strategies, and technologies involved in managing water resources in a sustainable and efficient manner.

2. The Importance of Water Resource Management

Water is crucial for human survival and economic development. In many parts of the world, however, water resources are becoming increasingly scarce due to over-exploitation, pollution, and the effects of climate change. The growing competition for freshwater between agricultural, industrial, and domestic sectors exacerbates these challenges. Effective water resource management is therefore necessary to:

- **Ensure a steady water supply** for agricultural production, industrial activities, and urban consumption.
- **Preserve water quality** by preventing contamination from industrial discharges, sewage, and agricultural runoff.
- **Promote environmental sustainability** by managing water ecosystems and supporting biodiversity.
- **Foster equitable access** to water for all, especially marginalized and underserved communities.

Cities face challenges of water shortages, scarcity and stress due to various factors such as –

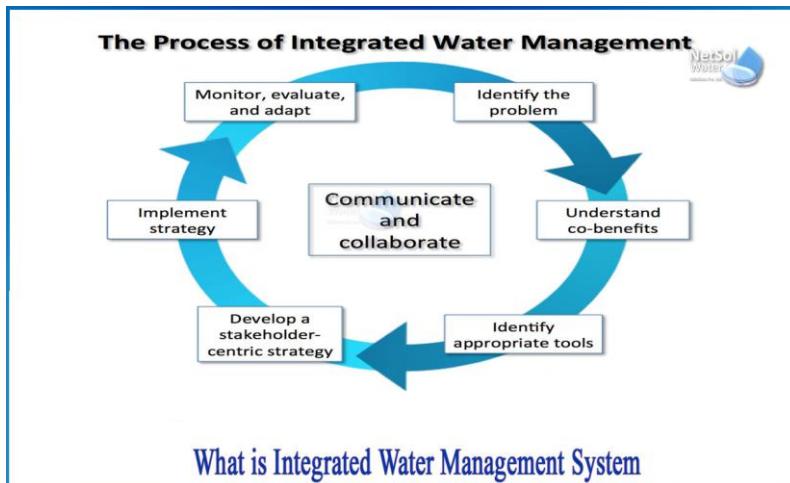
1. Rapid urbanisation due to population growth or migration
2. Over extraction of water to meet the demands from competing uses or their inability to establish an economic value for water.
3. Climate change brings rise to extreme weather conditions leading to high intensity rainfall in short durations along with longer duration of dry spells.
4. Most cities are dependent on water from distant sources which exacerbates the problems.
5. Cities also lack appropriate infrastructure in terms of storage or treatment capacities which also give rise to the challenges of water stress and scarcity.

In order to tackle these challenges cities need to adopt Water Resource Management actions (World Bank, 2017).

3. Key Principles of Water Resource Management

Effective water resource management depends on several core principles that guide the equitable, sustainable, and efficient use of water resources.

3.1 Integrated Water Resource Management (IWRM)


Integrated Water Resource Management (IWRM) is a comprehensive approach that considers the social, economic, environmental, and institutional aspects of water management. It aims to:

Balance water demands across different sectors (agriculture, industry, and domestic use) while maintaining environmental health.

Incorporate diverse stakeholder perspectives, ensuring that policies and practices are inclusive and equitable.

Promote collaboration between government agencies, local communities, and businesses to manage water resources efficiently.

IWRM helps develop a balanced framework that integrates supply-side management (e.g., water availability and storage) with demand-side management (e.g., water conservation and efficiency).

3.2 Sustainability and Resilience

Water management strategies must emphasize **sustainability**—the ability to meet present water needs without compromising future generations' ability to meet theirs. This is particularly relevant in the face of climate change, which is expected to alter rainfall patterns, increase the frequency of droughts, and affect water availability.

Resilience involves **adapting water management practices** to changing environmental conditions, improving infrastructure to withstand climate shocks, and enhancing the ability of communities to cope with water scarcity.

4. Water Resource Assessment

A comprehensive understanding of water resources is the first step in effective management. Water resource assessment involves the collection and analysis of data to evaluate the quantity, quality, and distribution of water resources.

4.1 Hydrological Assessment

Hydrology is the study of the movement, distribution, and quality of water in the environment. Hydrological assessments include:

Surface Water: The assessment of rivers, lakes, and reservoirs, including streamflow measurements, seasonal variations, and water availability.

Groundwater: The evaluation of aquifers, wells, and groundwater recharge rates to understand subsurface water availability.

Water Quality Monitoring: The measurement of physical, chemical, and biological parameters (e.g., pH, turbidity, dissolved oxygen) to assess contamination levels and ensure water safety for consumption and ecological health.

4.2 Water Use and Demand Analysis

To manage water effectively, it is essential to assess **current and future water demand** across various sectors. This involves:

Agricultural Water Use: Estimating water requirements for irrigation based on crop types, weather conditions, and water use efficiency.

Domestic Water Use: Analyzing household consumption, public water supply systems, and urbanization trends.

Industrial Water Use: Identifying water demands in industrial processes, such as cooling, cleaning, and production.

By understanding these demands, water managers can better forecast future needs and plan accordingly.

5. Water Allocation and Distribution

Water allocation refers to the process of assigning water resources to various sectors (agriculture, industry, domestic use, and the environment) based on availability and demand.

5.1 Water Allocation Models

There are different models for allocating water, such as:

Equitable Allocation: Ensuring that water is distributed fairly among sectors and stakeholders, including marginalized or vulnerable communities.

Priority-Based Allocation: Prioritizing certain sectors, such as drinking water or ecosystem health, over others when water scarcity occurs.

Market-Based Allocation: Using pricing mechanisms or water markets to allocate water to those who are willing to pay for it, encouraging efficient use.

5.2 Water Distribution Systems

Effective water distribution systems are essential for ensuring equitable access to water.

These systems include:

Pipelines and Canals: Infrastructure to transport water from its source to users, including water treatment plants and storage reservoirs.

Smart Metering and Monitoring: Technologies that allow real-time tracking of water usage, leak detection, and pressure regulation to optimize distribution and reduce waste.

5.3 Transboundary Water Management

For rivers or aquifers shared by multiple countries, **transboundary water management** requires international cooperation. Legal frameworks, such as the **UN Watercourses Convention**, help regulate how shared water resources are managed and allocate water rights between nations.

6. Water Conservation Strategies

Water conservation is a crucial component of sustainable water resource management. Strategies for conservation include:

6.1 Efficient Water Use

Encouraging the use of water-efficient technologies and practices across all sectors:

Agriculture: Implementing **drip irrigation**, **rainwater harvesting**, and the use of **drought-resistant crops** to reduce water consumption.

Industry: Using **closed-loop systems**, **water recycling**, and **low-water technologies** to reduce industrial water demands.

Domestic Use: Promoting the use of **water-efficient appliances** (e.g., low-flow toilets, showerheads) and encouraging behavioral changes like reducing water waste.

6.2 Water Recycling and Reuse

Recycling and reusing water can significantly reduce overall demand. Water treatment technologies like **membrane bioreactors**, **constructed wetlands**, and **reverse osmosis** are used to treat and reuse wastewater for non-potable purposes, such as irrigation, industrial cooling, and landscape irrigation.

7. Water Quality Management

Water quality management ensures that water resources are safe for human consumption, ecological balance, and industrial use. Key strategies include:

7.1 Pollution Prevention

Preventing pollution at the source is crucial for maintaining water quality. Strategies include:

Industrial Wastewater Treatment: Ensuring that industries treat their wastewater before discharge into water bodies.

Agricultural Best Practices: Reducing the use of fertilizers and pesticides, implementing buffer zones along waterways, and promoting organic farming to minimize runoff.

7.2 Ecosystem-Based Approaches

Healthy ecosystems, such as wetlands, forests, and riparian zones, act as natural filters and help maintain water quality. Protecting and restoring these ecosystems can significantly improve water quality and reduce treatment costs.

7.3 Monitoring and Enforcement

Regular water quality monitoring and the enforcement of environmental regulations are essential for maintaining safe water resources. This includes:

Surveillance of pollutants like heavy metals, nutrients, and microbial contaminants.

Enforcement of water quality standards to prevent the contamination of freshwater supplies.

Methods Of Water Management

1. Rainwater Harvesting System
2. Groundwater recharge
3. Greywater System
4. Recycling wastewater/ STP system
5. Retrofit water conservation
6. Behavioral Practices

1. Rain Water Harvesting System: Rainwater harvesting involves collecting and storing rainwater for later use. This method is especially valuable in arid regions and can be used for drinking, irrigation, and industrial processes. Rainwater harvesting system is collection of rainwater from the surface which directly receives rainfall. Rainwater harvesting system can be rooftop rainwater harvesting or artificial groundwater recharging. Rooftop rainwater harvesting is quite popular since it can either be stored in a tank or diverted to artificial recharge system.

Normally, rainwater is good enough to drink. However one should avoid using water from the first rain of the monsoon. Rainwater harvesting systems usually incorporate first rain separators. Rooftop rainwater can also be used to recharge groundwater. Water from

the roof is directly let into the percolation chamber around the house pits. It percolates into the soil and recharges the groundwater, if the soil is porous. After a while, the water levels in the area will go up and the wells will have enough water.

2. Groundwater recharge: Groundwater recharge is a hydrologic process where water moves downward from surface water to groundwater. Recharge occurs both naturally and artificially. In natural groundwater recharge, groundwater is recharged naturally by rain and snow melt and to a smaller extent by surface water such as rivers and lakes. Artificial groundwater recharge is a successful method in order to purify surface water and to improve the water management. Artificial groundwater recharge is the infiltration of surface water into shallow aquifers to increase the quantity of groundwater. The volume-rate abstracted from an aquifer in the long term should be less than or equal to the volume-rate that is recharged.

3. Greywater System: Greywater is wastewater from non-toilet plumbing systems such as hand basins, washing machines, showers and baths. Most Greywater is easier to treat and recycle than blackwater, because of lower levels of contaminants. The method and standard of treatment in a Greywater system will vary with the size of the system. Pipes and supply points on the Greywater system must be clearly labeled in order to avoid confusion with the mains drinking water. Greywater systems can help you save 35% to 40% on your annual water bill.

4. Recycling wastewater/ STP system: Recycling wastewater involves Greywater system and blackwater system. Greywater is easier to treat and recycle than blackwater. Blackwater contains bacteria that can cause disease. That's why communities build wastewater treatment plants and enforce laws against the release of raw sewage into the environment. Sewage Treatment plant system are used to recycle blackwater. In recent years, there has been growing interest in waste-water reuse as a major component of water demand management.

5. Retrofit water conservation: Retrofitting involves the replacement of existing plumbing equipment with equipment that uses less water. Retrofit programs are permanent, one-time conservation measures that can be implemented with little or no additional cost over their lifetimes. The most successful water- saving fixtures are those which operate in the same manner as the fixtures they are replacing such as dual flush toilet system, shower flow restrictors, low-flow showerheads etc. A retrofit program involves the use of education programs to let users know which fixtures are best, where to get them, and how to install them.

6. Behavioral Practices Behavioral practices involve modifying water use habits to achieve more efficient use of water, thus reducing overall water consumption. Changes in water use behavior can be implemented without modifying existing equipment. Behavioral practices involve water conservation measures such as replacing or repairing leaky faucets, awareness activities to promote sustainable management of water resources etc.

Conservation Of Water Resources “Water water everywhere, not a drop to drink.” Water is indeed an essential resource for life on earth. Research shows that by 2025 India, along with many other countries will face a serious scarcity of water. Many

regions in our country are currently undergoing the process of water stress. India's socio-economic development has a lot to contribute to decreasing water resources. Rising population, industrialization, urbanization and modernization of agriculture are some of the main reasons for water shortages in many parts of the country. So water resources must be conserved.

8. Challenges in Water Resource Management

Despite advances in water resource management, several challenges persist:

Climate Change: Changes in precipitation patterns, increased evaporation, and the frequency of extreme events such as droughts and floods complicate water management.

Population Growth: As the global population increases, so does the demand for water, putting pressure on existing resources.

Pollution: Contaminants from agriculture, industry, and urban areas continue to degrade water quality.

Political and Institutional Barriers: Effective water resource management requires strong governance, but in many regions, political and institutional barriers hinder progress.

Conclusion

Water resource management is a complex and dynamic process that requires coordinated efforts across multiple sectors. By applying integrated approaches, adopting conservation technologies, and prioritizing sustainability, we can ensure that water resources are managed efficiently for the benefit of all sectors and communities. The future of water management lies in balancing the increasing demand for water with the preservation of this precious resource for future generations.

This chapter offers a broad overview of the challenges and strategies in managing water resources. It covers the importance of water management, key principles like IWRM, and offers specific solutions for improving water availability, quality, and conservation.

References

1. **Livelihoods.** (n.d.). Water in India. Retrieved from <http://www.devalt.org/water/WaterinIndia/Issues.htm> Government of India. (2008). National Water Mission under National Action Plan on Climate Change: Comprehensive mission document (Vol. II). Ministry of Water Resources.
2. Department of Economic and Social Affairs. (n.d.). Global initiative in rationalising water information (GIRWI) project: Status of implementation of CSD-13 policy action on water.
3. UN_DESA_CSD13_Monitoring_report_on_Water_andSanitati on.pdf,2014
4. The World We Want, The final post 2015 water thematic consultation,Report. 2015.
5. IWRS (2001). "Theme paper on management of Floods and droughts" Water Resources Day, Indian Water Resources Society.
6. Lal, M. (2001). Climate Change – Implications for India's Water Resources. Jour. Of India Water Resources Society, Vol. 21, No. 3, July, pp. 101-119.
7. The World We Want, The final post 2015 water thematic consultation,Report. 2015.

8. Energy and Water- The Vital link for a sustainable Future, SIWI (Stockholm International Water Institute), 2014- www-report-web-2.pdf, 2014.
9. OECD, financing water Resources Management, 44542043.pdf 2010-2011.
10. 10] Bhagi, A. K., & Chatwal, C. R. (Year). Environmental chemistry. Himalaya Publishing House.
11. Balke, K. D. (2003). Surplus or absence of chemical components in water and its consequences for public health. In K. D. Balke & Y. Zhu (Eds.), Water and development (pp. 36–42). Geology Press.
12. Remmler, F., & Schulte-Ebbert, U. (2003). Development of understanding the process of self-purification of groundwater. *Vom Wasser*, **101**, 77–90. (In German).
13. Wolters, N., & Hantke, H. (1982). Experiments with infiltration methods in the Hessian Ried area. *DVWK-Bulletin*, **14**, 97–118. (In German)
14. Schmidt, H. (1980). Groundwater recharge and water production [Article in German]. Zentralblatt für Bakteriologie, Hygiene I, Abteilung Originale B, —, 134–155. <https://pubmed.ncbi.nlm.nih.gov/>
15. Firch, M., & Wichmann, K. (2005). Influence of limiting factors upon the purification capacity of an optimized bank filtration. Final report of the project B5 of the BMBF-research project export-oriented research and development in the field of water supply and sewage. Part I: Drinking water (In German). Technical University Hamburg-Harburg.
16. Chaturvedi, M. C. (1987). Water resources systems planning and management. Tata McGraw-Hill Publishing Company.
17. Kuiper, E. (1973). Water resources development, planning, engineering, and economics. Butterworths.
18. **Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1982).** Water resources systems planning and analysis. Prentice Hall.
19. Taha H A, (1996), “Operations Research”, Prentice Hall of India, N Delhi.
20. Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Dhingra, A., Hussain, A., & Changani, F. (2019). Applications of nanotechnology in water and wastewater treatment: A review. *Asian Journal of Water, Environment and Pollution*, **16**(4), 81–86.
21. Khan, S. H. (2020). Green nanotechnology for the environment and sustainable development. In Green materials for wastewater treatment (pp. 13–46).
22. Saikia, J., Gogoi, A., & Baruah, S. (2019). Nanotechnology for water remediation. Environmental nanotechnology (Vol. 2, pp. 195–211).
23. Al-Rashdi, B. A. M., Johnson, D. J., & Hilal, N. (2013). Removal of heavy metal ions by nanofiltration. *Desalination*, 315, 2–17. <https://doi.org/10.1016/j.desal.2012.11.015>
24. Calimli, M. H., Nas, M. S., Burhan, H., et al. (2020). Preparation, characterization and adsorption kinetics of methylene blue dye in reduced-graphene oxide supported nano-adsorbents. *Journal of Molecular Liquids*, 309, 113171. <https://doi.org/10.1016/j.molliq.2020.113171>

25. Jiang, X., Ouyang, Z., Zhang, Z., et al. (2018). Mechanism of glyphosate removal by biochar-supported nano-zero-valent iron in aqueous solutions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 547, 64–72.
26. Lu, H., et al. (2015). Effective removal of cadmium ions from aqueous solution using chitosan-stabilized nano zero-valent iron. *Desalination and Water Treatment*,